If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-200x-500=0
a = 1; b = -200; c = -500;
Δ = b2-4ac
Δ = -2002-4·1·(-500)
Δ = 42000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{42000}=\sqrt{400*105}=\sqrt{400}*\sqrt{105}=20\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-20\sqrt{105}}{2*1}=\frac{200-20\sqrt{105}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+20\sqrt{105}}{2*1}=\frac{200+20\sqrt{105}}{2} $
| 2(5-6r)=10r-188 | | 9n+2=31 | | 3.5(t+6)=7 | | -3p-3(6-4p)=6(p-2)-15 | | 3.5y=15 | | 7/x+3=5/x+11 | | 2/3(3x-12)=3/4(4x-3) | | -13=-p | | 6y-10=6y+10=180 | | 0.8(v-7)=2 | | 24-3(6-3x)=11/4x | | s-10=4 | | -12x+2(x-4)+9x=9x-58 | | 2(m+3)/3=6m+2 | | (x-2)^2+17=17 | | 2(x+3)+6=3x-9 | | (2/7)x-2=x-(1/2) | | q+-2=-6 | | -3x+5x-16=2(x-3)-26 | | y=-12=18 | | 4/5(v-7)=2 | | 2(x+1)-3=6x+1-4x | | -28-6x+3x=14 | | (x-2)^2+17=0 | | -5.5(d-2)=-12.1 | | 6x–2(x+4)=12 | | 3x+0.25x=14.25 | | y+8=-1 | | X^2-22x+121=4 | | 7(2x+1)=37+4x | | v+-15=-9 | | x=-10.5 |